
KEY RECOVERY IN PASSWORD-BASED AES-
GCM WITH PARTITIONING ORACLE ATTACKS

Christian James Tan¹, Xu Jingxin², Ruth Ng³, Choo Jia Guang³
¹ NUS High School of Mathematics and Science, 20 Clementi Avenue 1, Singapore 129957

² Anglo-Chinese School (Independent), 121 Dover Road, Singapore 139650
³ DSO National Laboratories, 12 Science Park Drive, Singapore 118225

Abstract
While many cryptographic primitives are well tried and well tested, new attacks against them

still pop up from time to time. This report shines a light on a recent attack on non-key-commit-

ting authenticated encryption schemes called the partitioning oracle attack. We describe the

conditions required for the attack to be feasible, and illustrate the theory in practice by using this

attack on a toy messaging application which uses AES-GCM with MAC-based authentication.

We hope this paper can act as a resource for others to better understand the details of this attack,

and to provide an environment for researchers to play with the attack themselves.

1. Introduction
Authenticated encryption (AE) schemes have long been favoured in many applications for

their guarantee of privacy (encrypted data reveals no information of the plaintext data) and

authenticity (encrypted data cannot be modified in transit or forged without the receiving party

noticing, resulting in an invalid decryption).

However, in the case of non-key-committing AE schemes; that is, schemes where there exist

ciphertexts that can be decrypted validly by the receiving party under several distinct keys under

the same conditions, these become vulnerable to a chosen ciphertext attack that recovers the

secret key. This attack was termed the partitioning oracle attack by Len et al. (2021) in their

seminal paper on the topic.

Thus, in this paper, we attempt to define precisely the conditions required for the partitioning

oracle attack to be feasible, including both abstract requirements of the AE scheme itself (e.g.

the ability to create colliding ciphertexts) as well as those pertaining to a concrete implemen-

tation of the attack (e.g. the distribution of the key should be non-uniform, such as that of a

passphrase). We additionally illustrate the significant speedup of such an attack mathematically

against AE schemes with polynomial-based message authentication codes (MACs) as well as

through a toy example utilising AES-GCM, to better demonstrate the inner workings of the

attack.



2. Background & Theory
2.1. Authenticated Encryption
Symmetric-key encryption (SE) schemes are cryptographic schemes that utilise the same

secret key for both encryption & decryption. These schemes aim to achieve two main properties:

1. Correctness: the scheme works correctly; in the sense that encrypted messages can be

decrypted back to their original plaintext messages.

2. Confidentiality: the encrypted messages grant no information of the original plaintext

without knowing the secret key.

Authenticated encryption (AE) schemes fulfill both of these criteria, and one more:

3. Authenticity: encrypted messages cannot be forged or tampered with without being

detected.

Most schemes (tag-based encrypt-then-MAC) achieve this by combining an already existing

SE scheme (to achieve correctness & confidentiality) with a Message Authentication Code

(MAC) function: a function that takes in the secret key & some message to authenticate and

generates a MAC for it; acting as a “checksum” to ensure that the message could not have been

tampered with in transit (data integrity) and that it was sent from a verifiable source (as the

sender must know the secret key). It does so by calculating the MAC on encryption, sending it

with the encrypted data, and recalculating the MAC on decryption before comparing with the

original MAC. If they fail to match, that would imply that the encrypted message/MAC had

been tampered with in transit or was not sent from a verifiable source.

More formally, for an AE scheme 𝖠𝖤 with

• secret key 𝐾,

• underlying nonce-based symmetric encryption scheme

𝖠𝖤.𝑛 = (Enc(𝐾, 𝑁, 𝑀), Dec(𝐾, 𝑁, 𝐶)), with nonce 𝑁 , plaintext message 𝑀  &

encrypted ciphertext 𝐶.

‣ In order for the resultant AE scheme to achieve confidentiality and correctness, the under-

lying scheme 𝖠𝖤.𝑛 must achieve both as well (e.g. 𝑀 = 𝑛.Dec(𝐾, 𝑁, 𝑛.Enc(𝐾, 𝑁, 𝑀)))
• MAC function 𝖠𝖤.genMAC(𝐾, 𝑁, 𝐶),

the following pseudocode describes its encryption (𝖠𝖤.AuthEnc) and decryption

(𝖠𝖤.AuthDec) routines, with plaintext message 𝑀 , encrypted ciphertext 𝐶 and MAC 𝑇 .



𝖠𝖤.AuthEnc(𝐾, 𝑁, 𝑀)

𝐶 ← 𝖠𝖤.𝑛.Enc(𝐾, 𝑁, 𝑀)

𝑇 ← 𝖠𝖤.genMAC(𝐾, 𝑁, 𝐶)

𝐑𝐞𝐭𝐮𝐫𝐧 𝐶, 𝑇

𝖠𝖤.AuthDec(𝐾, 𝑁, 𝐶, 𝑇 )

𝑀 ← 𝖠𝖤.𝑛.Dec(𝐾, 𝑁, 𝐶)

𝑇 ′ ← 𝖠𝖤.genMAC(𝐾, 𝑁, 𝐶)

𝐈𝐟 𝑇 ≠ 𝑇 ′ then 𝐑𝐞𝐭𝐮𝐫𝐧 ⊥

𝐑𝐞𝐭𝐮𝐫𝐧 𝑀

Table 1: Pseudocode for 𝖠𝖤.AuthEnc & 𝖠𝖤.AuthDec. note that ⊥ represents an error state.

As such, 𝖠𝖤.AuthDec “fails” (by returning ⊥) if the sent MAC 𝑇  and recalculated MAC 𝑇 ′ do

not match.

2.1.1. Additional Data
Most AE schemes support authenticating some additional unencrypted data 𝐴 alongside

the ciphertext when encrypting and decrypting; such schemes are known as Authenticated

Encryption with Additional Data (AEAD) schemes:

𝖠𝖤.genMAC(𝐾, 𝑁, 𝐶) ⇒ 𝖠𝖤𝖠𝖣.genMAC(𝐾, 𝑁, 𝐴, 𝐶)

𝖠𝖤.AuthEnc(𝐾, 𝑁, 𝑀) ⇒ 𝖠𝖤𝖠𝖣.AuthEnc(𝐾, 𝑁, 𝐴, 𝑀)

𝖠𝖤.AuthDec(𝐾, 𝑁, 𝐶) ⇒ 𝖠𝖤𝖠𝖣.AuthDec(𝐾, 𝑁, 𝐴, 𝐶)

For the purposes of this paper, all AE schemes are assumed to be AEAD schemes, as the

presence of additional data has no effect on the partitioning oracle attack.

2.1.2. Key-Commitment
Although the MAC function may guarantee authenticity under honest conditions, the concept

may break down under dishonest ones (such as the recipient party decrypting under a different

key). We characterise this specific situation using the notation & definitions from Menda et

al. (2023):

An AE scheme 𝖠𝖤∗
𝑘 is considered key-committing (or CMT∗

𝑘 secure) if all ciphertexts can

only be decrypted correctly with their respective keys. That is, notating the space of ciphertexts

as 𝒞 & the keyspace as 𝒦:

∀𝐶 ∈ 𝒞 ∃!𝐾 ∈ 𝒦 such that 𝖠𝖤∗
𝑘.AuthDec(𝐾, 𝑁, 𝐶) ≠⊥

for some fixed nonce 𝑁 . If, instead, there exists one or more ciphertexts that decrypt validly

under several keys, that is:



∃𝐶 ∈ 𝒞, ∃𝑘1, 𝑘2 ∈ 𝒦 such that 𝖠𝖤.AuthDec(𝑘1, 𝑁, 𝐶) ≠⊥,

𝖠𝖤.AuthDec(𝑘2, 𝑁, 𝐶) ≠⊥

then such a scheme is considered non-key-committing. Interestingly, many common AE

schemes are non-key-committing (GCM-SIV, ChaCha20-Poly1305, (Menda et al., 2023)).

However, simply being non-key-committing is not sufficient (but is necessary) for the parti-

tioning oracle attack. As such, we introduce two more notions, adapted from Len et al. (2021):

An AE scheme 𝖠𝖤 is considered vulnerable to a targeted multi-key collision attack (TMKC)

if an adversary 𝒜 is able to construct a ciphertext 𝐶 ∈ 𝒞 & nonce 𝑁  pair such that

𝖠𝖤.AuthDec(𝑘, 𝑁, 𝐶) ≠⊥ ∀𝑘 ∈ 𝕂

for some target subset 𝕂 of the keyspace 𝒦. If the adversary can only construct such a pair for a

random subset 𝕂 of 𝒦 such that |𝕂| > 𝜅 for some 𝜅, then the scheme is considered vulnerable

to an untargeted multi-key collision attack (MKC𝜅).

Although the scope of this may seem a bit limited (as having dishonest parties in symmetric

encryption is rare), this notion of non-key-commitment is central to the execution of the parti-

tioning oracle attack.

2.2. The Partitioning Oracle Attack
Abstractly speaking, the partitioning oracle attack enables an adversary 𝒜 to recover the secret

key of some AE scheme 𝖠𝖤 with ciphertext space 𝒞 & keyspace 𝒦 (with distribution specified

by the probability mass function 𝐹𝒦) under the following conditions:

1. 𝖠𝖤 is vulnerable to a TMKC attack.

2. 𝒜 has access to an oracle 𝒪 that accepts ciphertexts and outputs whether the decryption with

the secret key 𝐾 succeeds.

Specifically,

1. 𝒜 uses the TMKC attack to construct a ciphertext 𝐶 that can decrypt validly under some

𝕂 ⊂ 𝒦 where Pr(𝐾 ∈ 𝕂 | 𝐾 ∈ 𝒦) = 1
2 , i.e. 𝐾 has a 50% chance to be in 𝕂.

• e.g. if 𝒦 follows a uniform distribution, this is equivalent to constructing

𝕂 such that |𝕂| = 1
2 |𝒦|.

2. It sends 𝐶 to 𝒪 to check if 𝐾 ∈ 𝕂 (in which case the decryption will succeed), thereby

partitioning 𝒦 into 𝕂 and 𝒦 \ 𝕂.



3. It restricts 𝒦 to the set that contained 𝐾 (𝕂 if it succeeded, else 𝒦 \ 𝕂), before going back

to 1.

3. Implementation
3.1. Keyspace Distribution
An important thing to note about the implementation of the attack is the probability distribution

of the keyspace 𝒦. Assuming that the TMKC attack runs in 𝑂(𝐺(|𝕂|)) of the size of the subset

𝕂 for some function 𝐺, we would want to minimise |𝕂| to have the TMKC attack run as

efficiently as possible (and thus the entire attack as a whole as well).

Without loss of generality, we take |𝕂| ≤ |𝒦 \ 𝕂|, as if |𝕂| > |𝒦 \ 𝕂| then we can reassign

|𝕂′| = |𝒦 \ 𝕂| ⇒ |𝕂′| ≤ |𝒦 \ 𝕂′|. As such, the maximum size for |𝕂| is when

|𝕂| = |𝒦 \ 𝕂| = |𝒦| − |𝕂|

2|𝕂| = |𝒦|

∴ |𝕂| = 1
2
|𝒦|

This is exactly the case as when 𝒦 had a uniform distribution (in the example in Section 2.2),

which implies that the uniform distribution has the worst case performance for the attack.

As such, to speed up the attack, we want the keyspace 𝒦 to be very “non-uniform”, i.e. have

|𝕂| as small as possible. An avenue for this would be the distribution of passwords: These tend

to follow a Zipfian distribution (Wang et al., 2014) due to their relation to natural language.

As such, |𝕂| can be ≪ 1
2 |𝒦|: For the dataset we utilised¹, |𝒦| = 100000, but |𝕂| ≈ 6122,

significantly smaller than 12 |𝒦| = 50000.

Figure 1: Frequencies of passwords in the dataset. As the log-log graph (left) is approximately linear, it

approximately follows Zipf’s Law.

¹https://github.com/ignis-sec/Pwdb-Public/blob/master/statistical-lists/occurrence.100K.txt

https://github.com/ignis-sec/Pwdb-Public/blob/master/statistical-lists/occurrence.100K.txt


3.2. Performance
As mentioned earlier, the performance of the partitioning oracle attack as a whole is dependent

on the performance of the underlying TMKC attack that is utilised. More specifically, assuming

that the TMKC attack runs in 𝑂(𝐺(|𝕂|)) of the size of the subset 𝕂 (from Section 3.1), then

the entire partitioning oracle attack runs in

𝑂(∑
log 𝑛

𝑖=1

𝐺(𝑛)
2𝑖 )

where 𝑛 = |𝒦|, equivalent to partitioning the keyspace 𝒦 exactly in half each iteration (the

worst case).

As the TMKC attack itself is dependent on the scheme it is attacking, we will be focusing on the

most efficient & common example: for schemes that utilise (Carter-Wegman) polynomial based

MACs (e.g. GCM’s GHASH, Poly1305), the TMKC attack is equivalent to running polynomial

interpolation (to construct the ciphertext that passes through each evaluation point at the MAC).

As such, the runtime of the partitioning oracle attack becomes

∑
log 𝑛

𝑖=1

𝑂(𝑛2)
2𝑖 = 𝑂(𝑛2)

For naïve polynomial interpolation. If using fast polynomial interpolation (which runs in

𝑂(𝑛 log2 𝑛)), we obtain

∑
log 𝑛

𝑖=1

𝑂(𝑛 log2 𝑛)
2𝑖 ≈ 𝑂(𝑛 log2 𝑛)

3.2.1. Dictionary Attack
A Dictionary Attack, similarly to the partitioning oracle attack, enables an adversary 𝒜 to

recover the secret key of some AE scheme 𝖠𝖤 with ciphertext space 𝒞 & keyspace 𝒦
alongside a decryption oracle 𝒪 that again takes ciphertexts and outputs whether they decrypt

correctly or not. It does so by simply “brute-forcing” all 𝑘 ∈ 𝒦, from most probable to least

probable. Trivially, this runs in 𝑂(𝑛) where 𝑛 = |𝒦|. However, this means that the partitioning

oracle attack runs slower than the basic dictionary attack, as even the best performance of

𝑂(𝑛 log2 𝑛) < 𝑂(𝑛).

While this is true, it does not mean that the dictionary attack is strictly better than the partitioning

oracle attack. Specifically, looking at the number of oracle queries,



• the dictionary attack takes 𝑂(𝑛) queries, as it must query the oracle with each key one by

one (akin to linear search),

• but the partitioning oracle attack only takes 𝑂(log 𝑛) queries: as it halves the keyspace each

time (akin to binary search).

Figure 2: Graph of probability of recovering the key against the number of decryption oracle queries. At

14 queries, the partitioning oracle attack achieves > 50%, while the dictionary attack is still < 10%.

In concrete applications of these attacks, the oracle tends to be some form of server (e.g.

Section 4), thereby making oracle queries “expensive”: not only may they take very long to ex-

ecute, but sending large volumes of queries may become very noticeable by the receiving party

(perhaps through the excessive load). As such, if we disregard the “computation phase” (running

of the TMKC attack), perhaps through precomputing the ciphertexts beforehand, the overall

runtime does reduce to 𝑂(log 𝑛):

∑
log 𝑛

𝑖=1

1
2𝑖 = 𝑂(log 𝑛)

which is faster than the dictionary attack’s 𝑂(𝑛).

4. Demo
4.1. Description
For our toy example, we will be utilising a simple messaging application (written with python

socket) that encrypts and send messages between two parties who want to maintain confiden-

tiality over a public network. The application utilises AES-GCM, keyed with some preshared

passphrase sampled from the dataset used in Section 3.1.

Additionally, we have an “attacker dashboard” to aid visualisation of the attack, that was built

with Websockets & a web-based UI.



4.1.1. Fulfilment of Conditions
This simple example fulfils all conditions we have outlined above, beginning with the abstract:

1. The underlying scheme used is AES-GCM, which is not only non-key-committing but also

vulnerable to a TMKC attack.

2. There exists a decryption oracle: each packet is responded to with an acknowledgement

(ACK) from the recipient. In an attempt to mitigate an adversary from using such as

a decryption oracle, the app returns the ACK regardless of whether the packet decrypts

successfully. However, if the packet were to decrypt correctly, yet still error before sending

the ACK (in this case through incorrectly decoding as the wrong protocol), then such ACK

would not be sent. Thus, we can utilise the lack of ACK as a decryption oracle (better

illustrated in Figure 3.)

attempt decode

send ack

failure success

receive encrypted packet

attempt decrypt

attempt decode

send ack

error

Figure 3: Illustration of the decryption oracle in our toy example.

Moreover, we also fulfill the concrete requirements:

1. The preshared passphrase is sampled from a non-uniform distribution (Figure 1).

2. The adversary has precomputed all ciphertexts that collide ∀𝑘 ∈ 𝕂 where |𝕂| > 32.

4.1.2. Relevance
We model this toy example as a messaging app to mimic the most likely situation for this attack

to crop up: when 2 parties are exchanging encrypted data over a public channel; as it enables

each party to serve as some form of decryption oracle (as they would have to decrypt incoming

packets). Unfortunately, we lacked sufficient time to attack a more concrete example (which

will be elaborated on in Section 6.1).

5. Mitigation
To mitigate the partitioning oracle attack, any of the conditions we outlined above can be

broken:



1. Use a key-committing scheme. This can be done by using a collision-resistant MAC (e.g.

HMAC), or by performing the CTX transformation outlined in Chan & Rogaway (2022) on

an existing AE scheme.

2. Rectify the decryption oracle. As the exact details of the oracle is necessarily implementation

dependent, exactly how to do so again depends on the implementation.

3. Utilise a large & uniform keyspace. This is most easily done through using uniformly

generated keys as opposed to some pre-shared passphrase.

6. Conclusion
All in all, we have illustrated the process and conditions required for the partitioning oracle

attack, alongside showing algorithmically the speed-up against brute force. Moreover, we have

created a demonstratory example to further exemplify these points.

6.1. Future Work
As mentioned earlier, we originally intended to apply the attack to a “real-world” pre-existing

example, but were unable to due to a lack of time. As such, for possible future work, we may

look into attacking network protocols that appear to be vulnerable (e.g. Kerberos, TLS).

Bibliography
Chan, John, & Rogaway, P. (2022). On Committing Authenticated-Encryption. European

Symposium on Research in Computer Security.

Len, J., Grubbs, P., & Ristenpartmas, T. (2021). Partitioning Oracle Attacks. 30th USENIX

Security Symposium (USENIX Security 21), 195–212.

Menda, S., Len, J., Grubbs, P., & Ristenpart, T. (2023). Context Discovery and Commitment

Attacks: How to Break CCM, EAX, SIV, and More. https://eprint.iacr.org/2023/526

Wang, D., Jian, G., Huang, X., & Wang, P. (2014). Zipf’s Law in Passwords. https://doi.org/10.

1109/TIFS.2017.2721359

https://eprint.iacr.org/2023/526
https://doi.org/10.1109/TIFS.2017.2721359
https://doi.org/10.1109/TIFS.2017.2721359

	KEY RECOVERY IN PASSWORD-BASED AES-GCM WITH PARTITIONING ORACLE ATTACKS
	Abstract

	Introduction
	Background & Theory
	Authenticated Encryption
	Additional Data
	Key-Commitment

	The Partitioning Oracle Attack

	Implementation
	Keyspace Distribution
	Performance
	Dictionary Attack


	Demo
	Description
	Fulfilment of Conditions
	Relevance


	Mitigation
	Conclusion
	Future Work

	Bibliography

